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Fully Discrete Galerkin Methods for the 

Korteweg-de Vries Equation* 

By Vassilios A. Dougalis and Ohannes A. Karakashian 

Abstract. We construct and analyze fully discrete Galerkin (finite-element) methods of high 
order of accuracy for the numerical solution of the periodic initial-value problem for the 
Korteweg-de Vries equation. The methods are based on a standard space discretization using 
smooth periodic splines on a uniform mesh. For the time stepping, we use two schemes of 
third (resp. fourth) order of accuracy which are modifications of well-known, diagonally 
implicit Runge-Kutta methods and require the solution of two (resp. three) nonlinear systems 
of equations at each time step. These systems are solved approximately by Newton's method. 
Provided the initial iterates are chosen in a specific, accurate way, we show that only one 
Newton iteration per system is needed to preserve the stability and order of accuracy of the 
scheme. Under certain mild restrictions on the space mesh length and the time step we prove 
L2-error estimates of optimal rate of convergence for both schemes. 

1. Introduction. In this paper we shall be concerned with the numerical solution 
by fully discrete Galerkin methods of the periodic initial-value problem for the 
Korteweg-de Vries (KdV) equation. Given 0 < T < x, we shall approximate a real- 
valued function, u = u(x, t), for (x, t) E [0, 1] x [0, T], 1-periodic in x for all 
t E [0, T], and satisfying 

(1.1) Ut+uX+UXXX =0, (Xt) e [0,1] x(0,T], 

{u(x,O) = u0(x), x E [0,1], 
where uo is a given 1-periodic function smooth enough, cf., e.g., [3], to guarantee that 
(1.1) has a unique, sufficiently smooth solution so that the various convergence 
estimates below hold. For error estimates of other numerical methods for (1.1), cf., 
e.g., the references of [2]. 

We begin by introducing notation. For integer s > 0 and real 1 < p < x, denote 
by Ws = Wp(0, 1) the usual real Sobolev spaces on (0,1), and by I- II isp the 
associated norms. Let Hs = W2 and I = *s,2 The inner product and norm on 
L2= L2(0, 1) are denoted by (-, ) and 11 , respectively, and the norm of L'(0, 1) 
by K. If v: [0, T] -* X is a (strongly) measurable map with values in a Banach 
space {X, 11 - II X}, let 

IIVIILP(X) = [l lV(t)11PXdt] for I < p < xc, 

IIVIIL'(X) = ess sup Ilv(t)IIx. 
0 < to< T 
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For integer r > 4, let Shr be the space of 1-periodic smooth splines of order r 
(degree r - 1) on [0, 1] with uniform mesh length h = 1/N for integer N > 0. It is 
well-known that if v is 1-periodic and sufficiently smooth, then, there exists a X E Sh 
such that 

s-1 
(1.2) E hilv - XIL < chsllvlls, 1 < s < r, 

j=O 

m-1 
(1.3) E hjI|v - XI1,. < chmIIvIm oo, 1 < m < r. 

j=O 

Here c is a constant independent of h, v and X. (Throughout the paper c will denote 
a generic constant, not necessarily the same in all instances.) In addition, Sr satisfies 
the following inverse properties: there exists a constant c, independent of h, such 
that for all X E Sr 

(1.4) I|XI| < ch-(Pa)"IXIa, lIIxIa o c h-(al/2)I1XII, 0 < a < < r - 1 

In what follows we let fluH denote any conveniently chosen element of Sr (e.g., 
L2-projection, interpolant, etc.) that satisfies, for uO sufficiently smooth, 

(1.5) IIFIuO - u011 < chr. 

We define the map F: Sh X Sh Shrfor v, wE Sh by 

(1.6) (F(v, w), X) = 1(vw, xj) + 
(vx,, 

X) VX E Sr 

i.e., if P: L2 -) Sr is the orthogonal L2-projection operator onto S r, we let F(v, w) = 

-P[4(vw) + v ]., We shall write F(v) = F(v, v) for v E Sh. Then, the (standard) 
Galerkin semidiscretization of (1.1) in Sr is a map Vh: [0, T] -3 Sr satisfying 

(1.7) Vht = F(Vh), 0 < t < T, Vh(O) = iu 0. 

It is known, cf. [8], [2], that vh(t) exists uniquely for t E [0, T] and, provided u is 
sufficiently smooth, satisfies the optimal rate of convergence error estimate 
1ku - VhIILOo(L2) < Chr, for some constant c = c(u, T). 

We shall be interested in full (i.e., in time also) discretizations of the system of 
ordinary differential equations (ODE's) represented by (1.7). In [2], a second-order 
accurate in time Crank-Nicolson type fully discrete scheme (coupled with Newton's 
method for the solution of the attendant nonlinear systems of equations at each time 
step) was analyzed. Here we turn to higher-order accurate full discretizations. In 
sequel, let J be a positive integer, put k = T/J and, for a continuous function v 
defined on [0, T], let Vn = V(tn), tn = nk, n = 0, 1, ... ,J. 

As a base for our fully discrete schemes we shall use two well-known semi-implicit 
(diagonally implicit) Runge-Kutta (RK) methods; cf., e.g., [5], [1], and the references 
of [1]. A q-stage Diagonally Implicit RK (DIRK) method for the autonomous system 
of ODE's y'(t) = f (y(t)) is determined by a table of real constants of the form A I b, 
where A = (aij), < i ji q is a lower triangular q X q matrix with aii = /3 # 0 and b is a 
q-vector b = [b1,...,hb] T The corresponding algorithm produces approximations 
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to y (t )=y (nk) for n = 0, 1,..., given by 
q 

(1.8) y = ynk aijf (yn), 1 < i < q, 
j=1 

q 

(1.9) y n+1 = yn + k , bjf (y nj). 

j=1 

(1.8) is equivalent to 
i-l 

(1.10) ni= + k~f (yn i + ij~inYj i-yn) 1 < i 
q 

j=1 

when uij are the elements of the q X q strictly lower triangular matrix M = I - A-1. 
(In (1.10), and elsewhere, we use the convention E_ = 0 if m < 1). We shall also 
frequently replace (1.9) by the following (in view of (1.8)) formula, in which 
a,.jl A l 

q 
(1.11) yn+?1 =n + E bia7-1(yn _-yn). 

i,j=1 

In particular, we shall consider two such specific DIRK methods. First the 
two-stage method (i.e., q = 2) given by the tableau 

(1.12) 
/ 0 b, /3 = (3 + V3)/6 = the largest root of ,2 - + 1/6 = O, 

(1.12) 1-2fl /3 b2 b, =b2= 1/2. 

We shall also consider in Section 4 the three-stage method (q = 3): 

/3 0 0 |b / = Cos- + -=thelargestrootof 
r3 18 2 

(1.13) 1 3 Gb2 3 2 1 1 

2/3 1-4/3 /3 b3 b1= b3 = 1/6(23- 1)2, b2 = 1-2bj. 

It is well-known, cf., e.g., [5], [1], [4], that the methods (1.12), respectively (1.13), 
have orders of accuracy 3, respectively 4, and good stability properties for a wide 
class of nonlinear problems. Usually a q-stage RK method of order of accuracy p is 
called a (q, p) RK method. We shall accordingly refer to (1.12), respectively (1.13), 
as the (2, 3), respectively (3, 4), DIRK method under consideration. 

Using, e.g., the formulation (1.10)-(1.11) we obtain now the following full 
discretization of (1.7): seek Un', 0 < n < J and Un", 1 < i < q, 0 < n < J - 1 in Sh 

satisfying 

(1.14) U0 = r?u0, 

and forn=0,1,...,J-1, 
i-l 

(1.15) Un,' = U' + k/3F(Un i) + j 1 (Un" - un) 1 < q 
j=1 

q 

(1.16) Un+1 = Un + E bia yj(Un" - Un). 
i,j=l 
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In the specific cases of the DIRK methods (1.12) and (1.13) under consideration, 
it may be shown that if u, the solution of (1.1), is sufficiently smooth, and if the 
discretization parameters k and h satisfy certain conditions, then, the scheme 
(1.14)-(1.16) has a unique solution, is consistent with (1.1), and stable. Moreover, 
numerical experiments that we have performed, indicate, as expected, that the 
approximate solution of (1.14)-(1.16), obtained using Newton's method for ap- 
proximating U''i, the solutions of the q N x N nonlinear systems (1.15), with one 
Newton iteration per stage using appropriate starting values, is indeed, for every n, 
O(kP + hV) close to Un in the L2-norm. However, we were unable to prove 
rigorously that the scheme has a local error of O(kP+1 + kh') in L2 and, conse- 
quently, we could not infer that its global L2-error has the optimal rate of 
convergence bound of O(k P + hr). 

We were able, however, to prove that modified versions of (1.14)-(1.16), obtained 
by perturbing (1.15) by "small" terms (that still permit solving q N x N nonlinear 
systems for the intermediate stages) yield schemes whose implementation via New- 
ton's method is almost as efficient as that of (1.14)-(1.16) and which are stable and 
convergent with a global L2-error of O(kP + hV) (for p = 3 and p = 4). We present 
the modified scheme in the case p = 3 below and summarize our main convergence 
results. The detailed motivation of the perturbation terms and the local error 
analysis for this scheme will be presented in Section 2; in Section 3 we prove our 
optimal rate of convergence L2-error estimate for the scheme coupled with Newton's 
method for the solution of the associated nonlinear systems. In Section 4 we state a 
modified scheme corresponding to (1.13) (p = 4) and the relevant convergence 
result without proof. Details of omitted proofs and numerical experiments may be 
found in a technical report available from the authors. 

The modified fully discrete scheme corresponding to the (2, 3) DIRK method 
(1.12) (henceforth referred to as the "modified (2, 3) scheme") is defined as follows. 
Let the map Q: Sh X Sh -- Sh be given, for v, w E S', by 

(1.17) (Q(V, w), X) = 2(vw, x.) VX ESh, 

i.e., by Q(v, w) = P[- -(vw),] and denote Q(v) = Q(v, v). Then, seek Un, 0 < n < 
J, Un",i i = 1, 2, 0 < n < J - 1 in Sr, such that 

(1.18) U0 = lIu0, 

andforn=0,1,...,J-1, 

u = U n + k/3[F(Un"i) +piQ(U ni _ U rj] 

(1.*19) + E ui(Unj - Un), i = 1, 2, 
j=1 

2 

(1.20) un+1 = Un + E bia-J(Un" - Un). 
ij=1 

Here aij, bj, /8 are given by (1.12), ,U21 = (1- 2/)/3 (all other IL= 0) and the 
perturbation parameters pi by 

(1.21) Pi = 1, P2 = 2/327(1 -8) 
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It may be proved, using the estimation techniques of Sections 2 and 3, that for 

each n, the solution Un of (1.18)-(1.20) exists uniquely and satisfies IlUn - unIl < 

c(k3 + h'), if u is sufficiently smooth and k and h are sufficiently small and satisfy 

k < ah for some a > 0. However, we shall not be interested in the solution of 

(1.18)-(1.20) per se, but we shall approximate Un'' by Newton's method. Let jo, 

jl. .. Jj be a collection of nonnegative integers to be specified below; jn + I will be the 

number of Newton iterations performed at each one of the stages i = 1, 2 in (1.19). 

For each n, 0 < n < J, we denote by Lj1 in Sh the approximation to U n, i.e., the 

final output of the fully discrete scheme at each step. For 0 < n < J - 1, given ULn 

and appropriate starting values Uon'l, U0'2 in S', we construct iteratively sequences 

Ujn'l, Uj''2] = 1, 2,.. . 'Jn+I in Sh by applying jn?+ steps of Newton's method to 

(1.19) first for i =1 and then for i = 2. It is straightforward to see that given U", 

Ln+fi, satisfies the following linear system of equations 

U - + I kI3F(U[+l, Uni -kI3Q(Uj+ l, [1 + 2p.]U i 2pU) j) 

i-i 

( 1 .22) = inf E jut i + (UJ - Ujn)-k3[ (I + Pi)Q(Un i )-p1Q(Ujn)] 
j=1 

1 <i -<j i - 1i 1~ 2. 

jn+1 
is then defined by replacing Un, Un i in (1.20) by their final approximations, 

i.e., by 
2 

(1.23) LU71n++ = U(n + E b UaJ(Ln) - Ufn). 
i,j=1 

"Good" starting values Uonp' must be supplied for each n and i so that the 

convergence of the Newton iterates U(i to U'' is as fast as possible, i.e., so that we 

may be able by performing just one iteration per stage (i.e., by taking jn + = 1) to 

preserve the stability and global order of accuracy of the "exact" scheme 

(1.18)-(1.20). It turns out that this is possible if we perform one additional iteration 

for n = O 1. We first take 

(1.24) jo = 0, j0 = U0 = flU0. 

Then we compute an intermediate value U1 E S' by 

(1.25) (Ul - Ujo, X) + k(L?[Uj]o x, X) + k([Ul] xx, X) = 0 VX E Sr 

The starting values Uon', i = 1, 2, n = 0, 1, are given by 

(1.26) UJn'1 = (1- n - /3)Ujo +(n + /3)U*, n = 0,1, 

(1.27) Un,2 = (/3-n)LUj +(1 + n-/3 )U*, n = 0, 1. 

For n > 2, the starting values that we shall use are 
- + n-1 n-2, (1.28) Uon i = din + u0n- j1 i2 jn-2 i = 1, 2, 

where 

dlo = /32 + 3/3/2 + 1, d1l = -2/(1 + /), d12= (1 + 2/)/2, 
(1.29) do0 = (6-5/3)/2, d1 = 4/8-3, d22= (2-3/3)/2. 
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In Theorem 3.1, we prove that, if u is sufficiently smooth, if k and h are sufficiently 
small and satisfy k < ah for some a > 0, and if we take j, = j2 = 2 and jn = 1 for 
3 < n < J, then, all intermediate approximations defined by (1.22)-(1.29) exist 
uniquely. Moreover, there exists a constant c = c(u, T, a) such that 

max 1Uin- Un'1< c(k3 + hr). 
O <n <J A 

Hence, by solving, for n > 3, two N X N linear systems of equations per step (one 
per stage) we may achieve an L2-bound for the error U- un of optimal rate of 
convergence in space and time. It should be noted that the matrices of the linear 
systems (1.22) (i.e., the Jacobians of the nonlinear systems (1.19)), change from step 
to step and from stage to stage. However, their sparsity structure is the same as that 
of, e.g., the Gram matrix associated with the usual B-spline basis of Shr. Hence, these 
matrices are "cyclically banded" due to the periodic boundary conditions and, under 
the hypotheses, e.g., of Theorem 3.1, are (nonsymmetric) positive definite. Such 
linear systems can be easily solved by direct methods and updating their elements is 
not expensive in our one-dimensional situation. Note that the unmodified scheme 

(PI - P2 = 0 in (1.22)) is not significantly less expensive to implement than the 
modified one. 

To perform the error estimations in Shr we shall, cf. [2], compare the solutions of 
the various fully discrete schemes with a certain quasi-interpolant Uh: [0, T] Sh of 
u, which is defined, [2], [7], by 

N 

(1.30) Uh(Xt) = E U(jh, t)j(X), (X) t) e [0,1] x [0, T], 
j=1 

where { By } 1 j<V Nis a suitably chosen basis of Sr, cf. [7, Lemma 2.4], so that 

(1.31) I uh(t)-U(t)II< chr a , (t)|, 0 < t < T 

holds. Following the proofs of Lemmas 2.2 and 2.4 of [7], we obtain 

(1.32) (Uht + UUhx + Uhxxx, X) = (+(t), X) VX e Sh, 0 < t T 

where the "truncation error" 74(t) satisfies, for u sufficiently smooth, the estimates 

(1.33) LDt'l11OO(L2) -< chr i = 0, 1, 2.... 

Here Dt/ = ai/at1 and the ci are positive constants depending on u and T only. (We 
shall henceforth generally omit mentioning that such constants may depend on u 
and T unless there is a specific reason for doing so. The symbols ci will also denote 
generic positive constants not necessarily the same in any two places.) Now, since 
the quasi-interpolation operator commutes with time differentiation, (1.31) gives 

(1.34) IlDtUh - DtU1L0(L2) < cih i = 0, 1, 2.... 

It is straightforward to check that (1.34) and (1.2)-(1.4) imply that 

(1.35) jDt/Uh1L-( W-1) < cid i = 0, 1, 2,.... 

We finally mention for further reference that (1.32) implies, for each i = 0, 1, 2,..., 
and for all X E Sr 

(1.36) (Dt[uht + UhUhx + UhXxx](t), X) = (Dti[4 +(Uh - U)UhxI(t), X). 
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Note also that it follows from (1.31) and (1.33)-(1.35) that 

(1.37) IIDi[i + (Uh -U)Uhx IIL0(L2) < cih, i = O, 1, 2,.... 

2. Analysis of the Local Error. To study the local error of the scheme (1.19)-(1.20) 
and also to motivate the choice of the perturbation terms, we first make some 
remarks on the local errors of the (2, 3) DIRK method in the context of the scalar 
ODE Dty = f(y). With f smooth and y(t') replacing yf in (1.8)-(1.9), series 
expansions in powers of k give 

(2.1) yfll =y(tn) + k/3fn + k2fi2f ft + k33 [(f/)2f"/2 + n(j)2j ] + 0(k4) 

and an analogous expression foryn 2, wherefn = fny(t)), fn = f'(y( f)) etc. Define 
e"' to be the residuals after 4 terms of the Taylor expansions of y n"' about t n; it may 
be easily seen that 

3 

(2.2) y n = E rijkiD/y(tn) + en ', i = 1, 2, 
j=O 

where 
2 

(2.3) Tij= Y.ai1T1,j_15 i= 12, 1 < j < 3, Tio = 1, i= 12. 
/=I 

It follows, by comparing (2.1) with (2.2), that 

(2.4) e1 = -/3k3(f )2fn/2 + 0(k4). 

In an entirely analogous manner, we obtain 

(2.5) ,= P21 + n3k3(fn)2f,'/2 + 0(k4). 

Finally, using the order relations of the method, i.e. 

(2 .6) bTAi- le = 11j !, I < j < 3 , b = ( b , 5b2 )T, e = (1 , 1) 
T 

we obtain by (1.11), (2.2), (2.3) that 

Y n+1 = y(tn+l) + (1/23) [enjl + (en,2 21 o2le)] + 0(k4). 

Hence, (2.4) and (2.5) yield finally that y n + 1 = y(t n + 1) + 0(k 4), i.e., that the local 
error is indeed of 0(k4). The example confirms a well-known property of many RK 
methods, namely the fact that although some type of intermediate residuals (e.g., the 
e', here) may be of lower order of accuracy (here, third), nevertheless, the large 
errors cancel and the correct order of the local error emerges when y n+ 1 is finally 
computed in terms of yn and y'll. The local error estimate can easily be rigorously 
justified, cf. [5], for, say, sufficiently smooth f with bounded appropriate higher 
derivatives. In case the ODE system in question is stiff and represents the semidis- 
cretization of a PDE, one should rigorously justify the computations by setting up 
equations for the local errors and estimating them using the properties of the 
particular partial differential operator without imposing severe limitations on k as a 
function of h that are not dictated by stability requirements. We attempt to do this 
in our present case by studying the local error of the (2, 3) DIRK method when 
applied to (1.7). 
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To this effect, define now, with uh as in (1.30), Vf'1 and Vn1l in Sh by 
i-i 

(2.7) P = U + k3F( i) + E 
Uij(in 

_ U), 1, 2 
j=1 

2 

(2.8) P n+l = Un + , biayj(Vn" - Un). 
ij=1 

(The existence of Jn7" follows, e.g., from Lemma 2.1 below.) Put 
3 

(2.9) A U - E Tij kjD/ un, i = 1, 2, 
j=O 

and define h'1 E S, by 

(2.10) i= A u n + En i i = 1, 2. 

Inserting (2.10) in (2.7) and using (2.9), (1.6), (1.17) and (2.3) yields after a rather 
lengthy but straightforward computation 

i-l 

-nj _ 2kI3Q(AiUn, in'i) - kfF(i nj) E ijEn 
(2.11) 1=1 

= 3k3 [(Til)2 -2i2]Q(Dtu n) + En i, i = 1, 2, 

where, using (1.35)-(1.37) it can be seen that 

(2.12) max ||EnJi| <c(k4 + khr). n i 
The equations (2.11) are the analogs of (2.4) and (2.5) of the scalar case. Note that 

the coefficients of the term Q(Dtun) in (2.11) are equal to -133k3, respectively 13 k3, 
if i = 1, respectively 2. Hence, using, e.g., the estimation technique of Proposition 
2.1 below, we may infer that we cannot achieve more than 0(k3) temporal accuracy 
for each En'. Proceeding now to the final phase at step n and substituting (2.9) and 
(2.10) in (2.8), using (2.6), (2.3), Taylor's theorem and (1.35), we obtain as in the 
scalar case that 

(2.13) Vn+1 - U n+1 = E n+1 +(1/2/3)[injl +(?(n2 - E) 

where En+ 1 is of optimal order, i.e. 

(2.14) max IIEn+1I11 < ck4. 
n 

Now, by (2.11), (2.12) it is seen (in L2) that 

fn+l - uhj = (k/2) E [2Q(A uin, Eni) + F(nj i)] + 0(k4 + khr). 

Hence, if, e.g., the nonlinear terms 2Q(Au , n' i) + F(i'n") were bounded above in 
L2 by a term of 0(k3 + hr)_something that we were unable to show-then, an 
optimal rate of convergence 0(k4 + khr) bound would follow for Vn+1 _ Un+1. 

We now shift our attention to a different strategy: if, by modifying the inter- 
mediate stages of the RK method, we could cancel the 0(k3) terms in the right-hand 
side of (2.11), then (2.11)-(2.14) and the triangle inequality would certainly give the 
desired 0(k4 + khr) bound for 1IVn+1 - un+111. One way to do this is by modifying 
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the scheme as done in (1.19). To study the local error of the modified method, define 
V'" i = 1 2 and V'P1 in Sh (for their existence, cf. Lemma 2.1) by 

i-l 

(2.15) Va' = Uh + kg [F(V") +p1Q(Vi - uh)] + nj -h 
j=1 

2 

(2.16) Vn+i = u + E b a -(Vn" _ Un). 
i,j=l 

With AiUn as in (2.9), introduce the residuals en"i E Sr by 

(2.17) Vnj = A uh + en, i=1, 2. 

Inserting now (2.9) and (2.17) into (2.15) and proceeding with similar calculations to 
those that led to (2.11), it may be seen that the effect of perturbation terms such as 
the ones introduced here is to cancel precisely the 0(k3) term in the right-hand side 
of (2.11). The new error equations are 

- k13[2Q((1 + pi) Au -ipn u, en"i) +piQ(e ni) + F( n i)] 

(2.18) i-i 

- E ijen i = E n is 1, 2 
j-l 

where 

(2.19) max IIE niI| <c(k4 + khr) 
n ,i 

We can now formally state a result about the local error of the modified (2, 3) 
scheme. First we need a preliminary result. 

LEMMA 2.1. Given w, v E Shr and X, M real numbers, let G: Sr _- Sr be given, for 
G E Sr, by 

(2.20) G(0) = - w- k[XF(cp) + uQ( - v)]. 

Then, if k I1 III v_, 0II < 2, the equation G(4) = 0 has a solution 4 that satisfies 

(2.21) 11,011 < (2 - k~y| Jjvxjj )1(2jjwjj + kpl| (v2) x|). 

Proof. By (1.4) it is seen that, for each h > 0, G is a continuous map in { Sh * . 
Integration by parts and the Cauchy-Schwarz inequality now yield for p E Sr that 

(G ) 1) [(1 - yItpl 11vxil 11 - (1W + 2pi (v )) 

It follows by our hypothesis that, for 1111 sufficiently large, (G(0), p) > 0. Using a 
well-known variant of Brouwer's fixed point theorem (Lemma 3.3 in [2]), we 
conclude that G(0) = 0 has a solution; (2.21) then follows from the previous 
estimate. El 

The main result of this section is the proposition that follows. 
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PROPOSITION 2.1. If k is sufficiently small, then the V'n', Vn ', e n i, defined by 
(2.15)-(2.17) exist and satisfy, for some constant c, 

(2.22) max(IVnJ 111 + ||Vn'211 + 1Vn + 1) < C' 
n 

(2.23) max Ile n'il < ck(k3 + hr) 
n , 

(2.24) max||Vn+ _- un+1' ck(k3 + hr). 
n 

Proof. The existence of Vn ' follows immediately by applying Lemma 2.1 to (2.15) 
and taking into account (1.35). (2.22) then follows from (2.21), (1.35) and (2.16). 
Taking the L2-inner product of e ni with itself in (2.18) yields 

i-i 

le i|- E i1ij(e ", eni) + (kfi/2)([A hu] , (en")2) = (En", en"), 
j=1 

where A u n (1 + pi)A ui - piun. There follows that 
i-l 

Ilen i1[1 -(k1/2) [Auh] j ]J ? 1en 1l + IIE 11 
j=1 

For k sufficiently small, taking into account (1.35) and (2.19), use of the above for 
i = 1 and 2 gives (2.23); (2.24) now follows from (2.23) and the triangle inequality 
applied to (2.13), which, of course, still holds (and (2.14) also) if we replace ?n+1 

ni in it by V 1, e n, respectively. [ 
We emphasize that it is in the case of special nonlinearities, like the quadratic 

F(u) in the KdV case, that such perturbations (which cancel terms involving higher 
derivatives of f ) have simple expressions, say, for third- or fourth-order accurate RK 
methods. Let us also point out that in the unmodified case we can obtain immediately 
from (2.11)-(2.14), in the manner of Proposition 2.1, the suboptimal in time estimate 

max - u|1n+1-un+1 < ck(k2 + hr). 
n 

3. Convergence of the Modified (2, 3) Method. In this section we derive optimal 
L2-error estimates for the scheme (1.22)-(1.23) with the initial conditions 
(1.24)-(1.29). We note first an identity for later reference: given v, w, 71, 0 E Sr and 
/3, a real numbers, let p, X satisfy (cf. Lemma 2.1) the equations 

pO = v + kfi[F(p) + aQ(Op- q)], X = w + k1[F(X) + aQ(X- )I. 
Then, if p - X = E, q - 0 = ', we have 

(3.1) E = v - w + k13[F(e) + aQ(e) + aQ(D) + Q(e, 8) + Q(D, V)], 
where 8 = 2(1 + a)X - 2a(? + 0) and v = 2a(0 - X). 

THEOREM 3.1. Let k, h be sufficiently small and suppose that 

(3.2) there exists a > 0 such that k < ah. 

Let jl = ]2 = 2 and jn = 1 for 3 < n < J. Then, U(jni, Ujn, defined by (1.22)-(1.29) 
exist uniquely. Moreover, the following holds: 

(3.3) maxjn u c(k + h) 
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Proof. In what follows, some constants, depending at most on u, T and a will play 
a distinguished role; we reserve for them the symbols c*, -3 < n < J. c, 0 < n < J. 
c* and C, whereas by c we denote as usual " uninteresting" constants. By (1.24), (1.5) 
and (1.31) it follows that IjUbo - uhII < cohh. Hence, if we choose c*" > c0, any 
nonnegative constants c*2 c*3 and compute c* by (I.c) below for i = 0, then (I.a,b,c) 
hold for i = 0 and any C > 0. Hence, given n, 0 < n < J - 1, we make the 
following 

INDUCTION HYPOTHESIS I (on n). 

((a) Uji exists uniquely, < i < n, 

(I) /Xi (b) |Uj'- u'll < ci*(k3 + hr), 0 < i < n, 

(c) c,*=Ck+(1+Ck)c,*_1+Ck(cL*-2+C*_3)I 0 < i < n 

where C is a positive constant to be chosen later, independent of n, h, k. We shall 
show that (I) holds for i = n + 1 and choose C in the process. Note that (I.c) implies 
that the c*, 0 < i < n, are bounded above by a positive constant c* depending only 
on C and T, i.e., at most on u, T, a, upon eventual choice of C. We subdivide the 
proof of the inductive step (I) into six parts. 

1. Existence of U(', i = 1, 2, Unl. Let Ujn' ia = 1 2, Un+ be defined by 

i-l. 

(3.4) (j ii = + kf[F(Un i) + pQ(lnj - U- n + Z (ij (jn i- _7)U 
j=l 

2 

n+l = Un + EZ ba.j(Un i- Ujn). 
i,j=l 

The existence of Un l then follows from applying Lemma 2.1 for i 1 and then for 
i = 2 to (3.4) provided we require that 

(3.6) kI3|1(Un)2) || < 2 

Note that (1.35), (1.4) and (I.b) imply 

(3-7) II(uj) ) x jUnxjI0 + 11(U - j < c + cc*(k3h372 + hr3/2). 

Hence, (3.6) holds if, e.g., we take k sufficiently small so that ck < 1 and also, in 
view of (3.2), require that cc*(a4h572 + ahr-l/2) < 1. The latter can always be 
guaranteed by eventually taking (i.e., when the choice of C is made) h sufficiently 
small (independently of n), since c* < c*. Conditions like this or, more generally, of 
the form 

(3.8) con*(k0 + ho) < 1, a, /A > O. 

will be frequently assumed in sequel and follow (upon eventual choice of C) by 
taking k, h sufficiently small so that cc*(kV + hll) < 1. For brevity's sake they will 
be referred to as "conditions of (3.8) type." 

2. A key stability result. We next establish the stability estimate 

(3.9) jjfn+1 - vn+11j < (1 + ck)JJUjn - unjj, 
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where V'1n has been defined by (2.16). Recalling (2.15), put En' -= Uni- Vn'i, 

= 1, 2, E = - = Ujn - Uh. Subtracting (2.15) from (3.4) and 
using (3.1) yields 

i-l 

E i = 'n + Z ij('nj -n) 

(3.10) 
j=1 

+k1 [F(cn'i) + piQ(cn'i) + Q(cn'i, 3ni) + piQ(?n) + Q(?n, vnai)] 
= 1,2, 

where 

(3.11) 3ni = 2(1 + pi)Vn j - 2pi(tn + un), vn' = -_2pi(V n1 - u ). 

Taking L2-inner products with _'ni in (3.10) and using the Cauchy-Schwarz 
inequality, we obtain 

i-l 

[ ( /4) 11 Sxn1100 II 11, jj||nj + ? |~j ll||En; - Dnjj 
(3.12) j=1 

+kf3Ipil jjxn n - [~(V -U n)] x, i = 1, 2. 

Now, from (2.9), (2.10), (1.35), (1.4), (2.23) and (3.2) there follows that IIVxn' I "0 < c. 
Also, using (1.4), (I.b) and (3.2) yields, under a condition of (3.8) type, that 

qnllj < 1. As a consequence, (3.11) and (1.35) give that IIxn i"II. < c. It follows now 
by (1.4), (1.35), (2.9), (2.10), (2.23) and (3.2) that 

jjn-[ ( - U n)] X|| 

I xl 
_ 

Uh+ - + ch-'V1 ' - Uh ) 

jjlnjj [C + ch-1k + ch 5!2(k4 + khr)] 
C 

jn. 

Therefore, (3.12) gives, for k sufficiently small, for i = 1, 2, 

(3.13) IEn ,i1 < (1 - ck)1 [(I + ck) II1njj + Z 1,,ijl ll1n ' njj 

from which, for k sufficiently small, there follow 

(3.14) lie 1'1 < (1 + ck) I lie, '12| 
, c| 11 

Note that the constants c in (3.14) are independent of C. 
We now introduce some notation. For X, X e Sr define, for i = 1, 2, ,(D , X) = 

F(4) + piQ( - X) and put 

(3.15) V's" = I(6 i I jn), W' - =Di(Vn , uh). 

It follows that (2.15) and (2.16) become-in the form of (1.8), (1.9)- 
2 2 

(3.16) VWn" = U n + k ? a Wwn", Vn+1 = un + k ? biwn"i 
j=l i=1 

Also, by definition, we have 
2 2 

(3.17) Jn i = UiJn + k ? aijv" ; J n+1 = UIn + k ? bi V". 
j=1 i=1 
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Subtracting (3.16) from (3.17) gives 
2 2 

(3.18) n'si = An + k ? aij(Vn" - w n;i) En+l = An + k ? bj(vn'i - Wn i) 
j=1 1=1 

The next step of the proof uses the algebraic stability or B-stability properties of the 
(2, 3) DIRK scheme (1.12); cf., [4], [6]. As in [4, Theorem 2.2] or [6, Theorem 1], 
taking the L2-inner product of en+1 in (3.18) with itself, yields 

2 

111E 
n+12 = jj~nl1 + 2k ? bi(en", Vnj _ w - 

i=1 

(3.19) 2 

ij=1 

where the matrix mi. = biai, + b-a1, - bjb1 is nonnegative definite, cf., [4], [6]. We 
easily conclude that 

2 

(3.20) IlE < jj~njj + 2k ? bi(,n,i( c n" _ w - 
) 

i=1 

To estimate the last term of (3.20), note that (3.10) and (3.18) give 

k/3(cn", v( i 
- wn") = -(kI3/4)(3n," [,n-] ) - (kIBpi/2)([t ]x E ), 

from which, with the aid of the same type of estimates that were used in deriving 
(3.14) from (3.12), we obtain from (3.14) for k sufficiently small, that 

k(en i, Vn" - wni) < c k jn,12 

holds. (3.9) follows now from (3.20). 
3. Uniqueness of U1ni Un+l. We may now show that Ujnri i = 1, 2, are unique. In 

addition to UniI let Wn'i E S' satisfy (3.4). Then if Y'n1 = Wn _- Jni, (3.1) gives 
i-l 

i Z nij + k13[F(Yni+) +piQ( ) + 2Q(Yn", (1 + pi)Un i-ppiUjn)], 
j=l 

from which, taking the L2-inner product of Y'n1 with itself, we obtain 
i-l 

[l-(~g/2ll[(+ pi)&n~i _PiUnj x 11 -klnJ11 lill~ l 
j =1 

Now, (1.4), (3.14), (I.b), (3.2), (1.35), a condition of (3.8) type and the estimates 
following (3.12) show that blUx7"I10 < c, II(Ujn)xII0 < c, which, substituted in the 
above give, for k sufficiently small, that Yrn" = 0, i.e., that Un'J (and Un+l also) are 
unique. 

4. Accuracy of the initial Newton iterates. We now prove that the starting values 
Uon'" required in (1.22) and defined by (1.24)-(1.29) are close to Un"'. First, note that 
it was proved in [2] that Ul defined by (1.25) exists uniquely in S' and satisfies 

IIU1 - ull < c(k2 + hr). Now, (1.26), (1.24), (2.9) and (2.17) give 

-1 _ 0,1 = f(Ul - ul) - eO'1 + [(1 - /)uo + flu' -((U5 + ikuot)] 

- ?kT Djuo + eo0). 
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Hence, it may be easily checked, using Taylor's theorem, (1.5), (1.31), (1.35), (3.14), 
(I.b), (2.23) and the triangle inequality that JJU00"l - 0? 111 = O(k2 + h4). Taking 
into account (1.27) for n = 0, we may also prove the same estimate for the second 
stage. We can write, in fact, 

(3.21) ' - Cf,'i1 < c(l + c*)(k2 + hr), = 1, 2. 

If n = 1, a similar analysis at t = t' and (1.26), (1.27) for n = 1 give 

(3.22) ' - CJ 'il < c(l + c*)(k2 + hr), = 1, 2. 

If now n > 2, it may be seen that (1.28), (2.9), (2.17) and Taylor's theorem imply, in 
view of (I.b), (3.14), (1.29), (1.35) and (2.23), that 

(3.23) - l < J(k3 + hr), = 1, 2, 

where cJ = c(1 + c* + cn* 1 + cr*_2). We summarize now (3.21)-(3.23) by 

(3.24) ||Un0 - Un ill < c(k20(n) + hr), i = 1, 2, 

where 9(n) 1 if n = 0 or 1 and 0(n) 3/2 if n > 2, and where 

(3.25) Cn = c(' + C* + C*-1 + Cr-2). 

Note that the constants c in this subsection (and in particular the constant c in 
(3.25)) are independent of C. 

5. Convergence of the Newton iterates Uj' , to U ''. Next, we prove that the U.'i", 
1 < j < jn+l, given by (1.22) exist uniquely and approach "quadratically" U n as ] 
increases. We achieve this inductively by an "internal" to (I) loop (II) (on the index 
j). First note from (3.24) that IIUon'' -Un 11 < c (kk(n) + hr/2)2. Hence, we make 
for some 0 < j <; jn + - 1 the 

INDUCTION HYPOTHESIS II (onj). 

{ (a) Un, exists uniquely for i = 1, 2, 0 < m <j, 

) (b) Umn," - nj '1 < cn(k 0(n) + hr/2)2?+l, i = 1, 2,0 < m j. 
We shall show that (II) holds for m = j + 1. Note that Ujn+ satisfies an equation of 
the form LUfjn,' = W, for some W= W(n, i, j) E Shr, where the linear map L = 

L(i, j, n): Sr Sr is defined, for p E Sr , as 

= -okI3F(c, U) - kIQ(4, (1 + 2p)Ui) i - 2piLjn). 

Hence 

(L?,,X,) > 
,1+1 {-/)|[1 +P)n i-pUjn] || ( 

Using now (II.b), (3.25) and similar estimates to the ones in part 3 above, we obtain, 
under conditions of type (3.8), that II(Uf")xIIo < c, II(Ujn)xII0 < c. It follows, for k 
sufficiently small, that L is positive-definite and that Uj) exist uniquely, i.e., that 
(II.a) is true for m = j + 1. To prove (II.b) for m = j + 1, subtracting (3.4) from 
(1.22), taking L2-inner products with Uj+ - Un' and using (1.4), we obtain, for 
i= 1,2, 

n U)j' - fni {1-(k/3/2) [(1 +pi) Un' - piUn] x4 > 

(3.26) 3 2 i-1 
ckh3"2 (P' - U + 2 i 

n+1 - + Z11L1 
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If i = 1, (3.26) and similar considerations to the ones already used yield, for k 
sufficiently small, that IIUj +-1U'"II <. ckh 3I2 IIUj - 2 Hence, by (II.b) 

(3.27) |j- Cnj 1 Xc (k@(n) + h r/2) 2j1+1? 

where X = ck-3/2c- (k (n) + hr/2) < d(k2h-3/2 + kh(r-3)/2). Hence, (3.2), (3.25) 

and a condition of type (3.8) allow making X < 1. (3.27) implies then that (II.b) 
holds for m = j + I and i = 1. For i = 2,(3.26) gives 

a n2- fn,2l ckh-3/2 un,2- jn,2 +IL121I nijl- 

where a = 1 - (k/3/2)I1[(1 + p2)Lj' - P2Ujnx'IIoo. Hence, (II.b) and (3.27) (X < 1), 
give, since j + 1 < in + 1 

(3.28) i,- jn,21 6 a-lckh3/2 un2 - U 7n 2 + a IIJ211I ||Ujn+ ( l|| 

Xcn(k0) + hr/2) 

where X* - a'[I/i211 + ckh -3/2cn(k(n) + hr!2)1. Since 1I 211 = (2/3 - 1)//3 < 1 and 
a may take any value in (0,1) if k is sufficiently small, we may assume that 

ItL21I < a < 1. Hence, a condition of type (3.8) yields that X* < 1 and (II.b), i = 2, 
m = j + 1, follows from (3.28); the inductive step II is now complete. 

6. Completion of inductive step I. There only remains to prove that (I) holds for 
i = n + 1 and choose C. With (J1jn+1 given by (1.23) we have 

-luin~l uh 11 
< U 1 n| + _ 1 + I?Vn+ -- n+- 

]I~n+1 Uh j. n+1 &h I 

Hence, (1.23), (3.5), (3.9), (I.b) and (2.24) give 
2 

n+1 - U+ c C U - UnnJII +(1 + ck)c*(k3 + hr) 

+ck(k3 + hr), 

where the constant c is independent of C. We now distinguish two cases. First, 
suppose that h r/2 < k9(n). Then, from (3.29), (II.b) and (3.25), it may be seen that 

-n+1 -un+| < [ck +(1 + ck)cn*-1 + ckc*2](k3 + hr), 

where the constant c does not depend on C. Now choose C to be equal to this c and 
define c*+l by c~n = Ck + (1 + Ck)c* + Ck(cn*l + cn*r2). It follows that (I.b) 
and (I.c) hold for i = n + 1. Now if it is the case that k/(n) < h /2, it is not hard to 
see from (3.26), (II.b), the fact that r > 4 and conditions of type (3.8) that 

IILUn - _U'"II < kc (kc(n) + hr/2)2 +i?+. Arguing now as in the derivation of (3.28), 
we can infer the estimate Ljn+ - 2 /c5n(/c0n + hr/2)2'+1?1. As a conse- 
quence, (3.29) gives the estimate 

L|U7n~' uhh < [ckcn +(1 + ck)c* + ck](k3 + hr). 

Hence, the choice of C and the completion of the inductive step (I) proceeds 
analogously. 

Theorem 3.1 can now be proved: we have just argued inductively that 

maxUj n- c*(k3 + hr), 
n 

which, in conjunction with (1.31), yields (3.3). E 
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4. A Modified (3, 4) Method. In this section, we present a modified version of the 
fully discrete Galerkin method corresponding to the (3, 4) DIRK scheme (1.13). We 
seek Un, 0 < n < J, Untl, 1 < i < 3, 0 < n < J - 1, in S' that satisfy 

Un = Un + kI3[F(Uni) + qiQ(Un"i - un) 

q2iQ ( - U , Un-" - - 72iUn-1)] 
(4.1) i-l 

+ ? - (unjUn 
,J=l 

3 

(4.2) un+1 = un + A bia7-1(Un" - Un). 
i,j=l 

Here, the perturbation terms are chosen so that the local error of the method is of 
O(k5 + khr). The constants q1j, q2i, Y, Y2i are given by the 3-vectors 

(qjj) = [1, _8/2 + 8 - 1, /2/(1 _ /)2] 
T 

(q2i) = [4/3/(2/3 + 1), 2/32(8/32 - 4 - 
1- )/(4/32 _ 4/3 - 1), 

(-92/4 + 172/3' - 106/32 + 26/3 - 2)/(1 - /3)2(2/32 - 3/3 + 2) T 

(-yj) = [/3 + 1, 3/2,-/3 + 2] T 
(72i) = [-/3,-1/2, / - 1]T, 

with /3 as in (1.13). The computation of Un'i now requires the values Un, Un-1 of 
the two previous steps; hence, two initial values U0, U1 must now be provided. 
Again, we solve the three nonlinear systems represented by (4.1) by Newton's 
method. With notation already introduced in the context of the (2, 3) scheme, this 
requires, given (if, U(n- ' and starting values Uon(', solving linear systems to find the 
iterates (j if 0 <j < in +; Uj1+ I is then computed by the analog of (1.23). The 
required initial values that we use are as follows: we takejo = 0 and Ujo) = U=f lu0 
as before. As Uji we use the one obtained by the modified (2, 3) method. The 
starting values Uon'" are given for n = 1, 2 by the equations 

i = -mU)0 +(1 + 'r,)U91, U02'i = -(1 + Trj) Ujo + (2 + Tr) Uj1. 

For n > 3, we define Ujn' = 0 AUjn-1, where the Xjj are solutions of the linear 
systems E'>O xij(-j)m - m!=m, 1 < i i 3, 0 < m < 3 (0? = 1). Here, the constants 
Tij, I < i < 3, 0 < j < 3, are defined by the analog of (2.3) in the (3, 4) case. We can 
prove the following result: 

THEOREM 4.1. Let k, h be sufficiently small and satisfy k < ah for some a > 0. Let 

12 = j3 = 2 andjn = 1 for 4 < n < J. Then, the (i, UJn that are computed as outlined 
above by the modified (3, 4) scheme coupled with Newton's method, exist uniquely; the 
following estimate holds: 

max 1 - 
n 

u c(k4 + hr) [ 
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